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A MIXED AEROSOL-PARTICLE CHARGE. 

FOR THE ELECTRIFICATION CURRENT 

A. V. Filippov 

THE ASYMPTOTE AND INTERPOLATION FORMULAS 

UDC 532.584:537.24 

In the electrohydrodynamic flows of weakly ionized aerosols particles may undergo elec- 
trification due to a combination of ion charges [i]. With a low disperse-phase concentration 
we can limit ourselves in the description of this process to a study of the charge of a single 
particle. The present study is devoted to an investigation of a mixed charge, where diffu- 
sion significantly affects ion motion in the electric field generated by external forces in 
the vicinity of the particle. In studying this mixed charge, as a rule, we can neglect the 
motion of the gas relative to the particle. In extreme cases in which neither the diffusion 
of the ions nor the external electric field have been taken into consideration, the problem 
of the unipolar charge of a spherical particle in a nonmoving weakly ionized gas has been 
solved in [2, 3]. The solution of the problem with respect to the influence exerted by a 
weak external electric field on the diffusion charge of the particle has been derived in 
[4]. In the present paper we examine the opposite case of a strong external electric field. 
We have used the method of joined asymptotic expansions [5] to find the distribution of ions 
in the vicinity of the particle as well as an expression for the electrification current, 
which refines the familiar solution [2]. These results are subsequently used in the construc- 
tion of an approximate interpolation formula for the global electrification current. We 
note that the conventional summation of the limit expressions [2, 3] to calculate the electri- 
fication current in the case of a mixed charge produces major errors. Comparison with the 
results from a numerical solution of the problem on a computer shows that the constructed 
interpolation formula provides good approximation in the case of arbitrary values for the 
electric Peclet number PeE. 

i. In disperse media consisting of a weakly ionized gas and dispersed particles, the 
latter may become charged by capturing the charge of the ions. Given a sufficiently small 
particle concentration, in order to study this phenomenon we will examine the electrifica- 
tion of a single ideally conducting spherical particle in a unipolar charged gas. Without 
loss of generality for the results, we will assume the ion charge to be positive. Let the 
ion concentration and the particle radius a be sufficiently small and we will assize the ex- 
ternal electric field to be uniform at distances of -a. 
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The effect of diffusion on the directed motion of the ion in the electric field is char- 
acterized by Pe E = abE0/D , where E 0 = IE01, where E 0 is the strength of the external elec- 
tric field, b and D are the coefficients of mobility and diffusion for the ions, associated 
by the Einstein relationship b = eD/(kT), e is the proton charge, k is the Boltzmann con- 
stant, T is the absolute temperature. If Pe E - i, we have a mixed particle charge in whose 
calculation it is necessary simultaneously to make provision for ion diffusion and the ex- 
ternal electric field. In numerous important cases it turns out that we have a small elec- 
tric Reynolds number Re E = u/(bE 0) (u is the relative velocity of the particle) and we can 
neglect the motion of the gas. In the following the gas is assumed to be nonmoving relative 
to the particle. 

Let K be the constant of the reaction rate for the transmission of the ion charge to 
the particle surface. Within the scope of these assumptions the volumetric charge density 
q will be determined in the vicinity of the particle through solution of the boundary-value 
problem: 

d i v  ] = 0, j : - - D v q  + qbE, E : - - V %  ( 1 . 1 )  

r : a : ]~  : - - K q ,  r ~ : q - > - q o ,  

= - - E o r c o s O  I - - - ~  + e r  7 ~ " 

Here r is the distance to the center of the particle; 0 is the angle between the vector E 0 
and the radius vector of the point; J is the density of the electric current; q0 is the un- 
perturbed value of q; ~ is the electric field potential. The subscript n identifies projec- 
tions of the vectors onto the external normal to the surface S of the particle. We can find 
the global electrification current only after solving problem (i.i) by integration I = 

-- []nds and it depends both on q0, E0 and the particle charge e r. 
s 

2. Boundary-value problem (i.i) has an analytical solution in the limit cases Pe E = 
0 [6] and Pe E = ~ [2]. In order to obtain an approximate formula for the function I(E 0, 
er, q0) for moderate PeE, let us take a look initially at the asymptote of the solution to 
problem (i.i) as Pe E + ~. 

We see that at the limit Pe E = ~ from (i.i) we have EVq = O, from which it follows that 
the volumetric charge density is constant along the force lines of the electric field strength. 
With er ~ ~ er/(3a2E0) g -i everywhere outside of the particle q ~ q0, and with er ~ - -i 
the space outside of the particle is subdivided into two regions: a region with a zero value 
for the volumetric charge, filled with the lines of force emanating from the particle, and 
a region in which q ~ q0- The location of the boundary between these regions is governed 
by the magnitude of the dimensionless particle charge er ~ . Along this boundary and also 
along that portion of the surface S, where E n < O, in the case of finite but large Pe E a 
diffusion boundary layer is formed, so that the ions in the vicinity of the particle are 
distributed in rather complex fashion. In this connection, let us introduce the new depen- 
dent variable 

w = (i  - -  q*) exp (Pe~ r r = ~ / a E  o, q* = q/qo. 

Problem (i.i) is transformed as follows: 

t O~r*w 1 0 s i n O - ~  --T 
PeE~ r* 0 r * ~  "~ r*~ sin O 00 

Ow 1 * * r* = t :  ~ ---- - -  .~- w PeE E~ + (w - -  i )  (E,~ + K*)  PeE, r* - +  c~ : w - +  0, 

------ [7 + cos 0 + -~ + sin 2 -- 

r* = r/a, E*  = E / E  o, K *  = K/bEo.  

(2.1) 

At the limit Pe E = ~ it follows from (2.1) that w = 0 everywhere outside of the particle; 
with finite large values for the Peclet number and with any value for er ~ we have a signifi- 
cant change in w only in that layer adjacent to the particle surface, and this considerably 
simplifies our study. 
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The presence of the small parameter PeE -2 in the problem makes it possible to construct 
its approximate solution and, employing the relationship of the variables q* and w, to find 
the distribution of the volumetric charge in the vicinity of the particle. The electrifica- 
tion currents are expressed directly in terms of the values of the function w and its deriva- 
tive at the particle surface: 

= P e  E Or* -}- E n  "4- t , 

i o =  jOsin0d0, i o _  I , j o = . - - J ~  
12~;a 2qo bE o qo bEo 

o 

Keeping in mind the symmetry of the problem, we will examine the behavior of the solu- 
tion in the half-plane passing through the axis of symmetry and bounded by that axis. Com- 
parative analysis of the individual terms in (2.1) when Pe E >> i, with provision made for 
the explicit form of the function E 2, demonstrates that it is possible to isolate several 
regions with diverse structures for the asymptotic solution. In each of these, from (2.1), 
we obtain an equation of simpler form for the principal terms of the expansion for the solu- 
tion with respect to the small parameter. 

In the outer region the solution of the problem w = 0 is found from differential equa- 
tion (2.1) in which the terms with the factor PeE -2 are neglected. 

In the boundary layer with the excluded region of the critical point of the vector field 
E: 0 ~ r* - 1 ~ O(PeE-l), 

It e ~ ! -  11 ~ 0 (Pe~'/a):  sin 0 > 0 (Pe;~/a) ,  

141<  1 - o I 0 - -  ( - -  0 

we will study the solution in the variables 

y = ~-l(r* - -  t), x = cos 0, e = 2/3 Pe~. 

The coefficient in the function relating r to the Peclet number has been introduced in order 
to achieve an equation of the simplest form. 

Expanding the functions E .2 and r *-~ over the powers of E and substituting into (2.1), 

for coefficients of the series w =~ wne ~ we have a chain of equations and boundary condi- 
tions: ~=o 

02We~@ 2 = ~hv o, ~ - -  e~ x = E=*/3, 

O%JOy 2 = Uw~ + 2 A o ( l $ l -  2U) exp (--I~ly) .... 

> 0 : A  o = 1, ~ < 0 : A  o = I + 3 ~ / K * ,  

i 2 )  y = 0 :  ~ = ~ ( W o - - 2 ) +  K * ( w  o - t ) ,  ow~@ = ~ +  K* 

m ~ > l ,  g - - + ~ :  wp--~0, p ) 0 . ,  

?/)rn.~ 

( 2 . 2 )  

As y § ~ the conditions must be satisfied for purposes of joining with the solution in the 
outer region. By solving (2.2) we will determine the principal terms of the expansion for 
the functions w and the local electrification current j0 with respect to the small parameter, 
and turning to the variable q*, we will obtain expressions for the distribution of the volu- 
metric charge in the region under consideration: 

~- 2 w w o = exp (--[~[g)Ao, w, = sY o, ~ > 0 :  
q* = o ( ~ ) ,  ]o = o ( ~ ) ,  

< 0: q* = (2~y~ - -  t)(1 @ 3~/K*) exp (2~y) @ I q- O(s'~), 

( 2 . 3 )  
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The density of the volumetric charge in the boundary layer when E n < 0 and with moderate 
values of y is on the order of q01En*[/K*, and in the outer region on the order of q ~ q0. 
In the formulation of problem (i.i) it was assumed that we could neglect the intrinsic elec- 
tric field of the ions with an arbitrary value for er ~ For this, as follows from an esti- 
mate of the orders of the terms in the Maxwell equation div E = 4~q, we need the simultaneous 
satisfaction of the relationships 4~qoa/E 0 < i, 4~q0a/E 0 < K*Pe E. Further, it is assumed 
that the condition K* ~ 1 is satisfied for the reaction rate constant. 

Let us examine the vicinity of the singular point of the vector field for the case 

]e~ ~ I - -  O(eVa), r* - -  t ~ 0(E1/2), IO - arccos ( - - ~ ) I ~ <  0(el/2). 

We w i l l  i n t r o d u c e  t h e  e x t e n d e d  v a r i a b l e s  X = ( e r  ~ + cos e ) z  - ~ / 2 ,  Y = ( r  * - 1 ) e - z / 2 .  S u b s t i -  
t u t i n g  i n t o  ( 2 . 1 )  t h e  e x p a n s i o n s  o f  t h e  f u n c t i o n s  w i t h  r e s p e c t  t o  t h e  s m a l l  p a r a m e t e r  z~ /~ ,  
f o r  t h e  z e r o t h  a p p r o x i m a t i o n  o f  t h e  f u n c t i o n  w we o b t a i n  t h e  b o u n d a r y - v a l u e  problem in  t h e  
upper  h a l f  p l a n e  o f  t h e  v a r i a b l e s  X, Y: 

~ 2 Y )  0 Oy 2 -4- ( l  e 02") 02w~ 
- -  = - -  r " 

Y = 0 :  w 0 = t ,  j 0 = _ W  X + - ~ - y - j e l / 2 + O ( e ) ,  

Y - . c o :  w0-+ O; Y > O ,  X - . c o :  w0-* O. 

(2.4) 

The boundary conditions at infinity represent the conditions for joining with the solution 
w = 0 in the outer region and with solution of (2.3) in the boundary layer of form w 0 = 
A 0 exp (-[XIY) in the X and Y variables. Substitution of the variables D = XY, $ = [X 2 - 
(i - er~ - er~ I/2 changes (2.4) into the Klein-Gordon equation 5w 0 = w 0 on the 
($, q) plane, whose solution with consideration of the boundary conditions is represented 
in the form 

co  

~v0 (~, 0) = ~ T (~) K 0 ([(~ - -  x)2 + ~211/2) dr; 
0 

"%~0:  ~ W ( ~ ) g o ( ] ~ - -  %l)d'~ = 2~ 
0 

( 2 . 5 )  

( 2 . 6 )  

[K0(x) is the MacDonald function]. 

The integral Fredholm equation of the first kind (2.6) is effectively solved by the 
Wiener-Hopf method [7]. Dropping the calculations, we will present the final solution 

T(~) = 2[exp (--T)/(~)i/2 ~- erf ~1/2], ( 2 . 7 )  

]o ~ _ X 2 ) _ 2 s g n X  el/~ + O(e). 

E x p r e s s i o n s  ( 2 . 5 )  and ( 2 . 7 )  d e t e r m i n e  t h e  f u n c t i o n  w and t h e  l o c a l  i o n i z a t i o n  c u r r e n t  in  
t h e  ne ighbo rhood  o f  t h e  c r i t i c a l  p o i n t .  The d i s t r i b u t i o n  of  t h e  v o l u m e t r i c  c h a r g e  i s  found 
by t r a n s i t i o n  to  t h e  v a r i a b l e  q* = 1 - w e x p ( - P e E ~ * / 2 ) .  

0 < 2/3 On satisfaction of the condition lie r I - ii - O(s ) in the neighborhood of the cri- 
tical point of the electric field strength (0 < r* - 1 <_ O(ei/3), sing ~ O(eZ/3)) we have 
a different asymptote of the solution. The boundary-value problem obtained in this case 
for the zeroth approximation of the function w is written in the form 

( [( ) ] o w  o ' (2.s) O~o t o X~ -~TI ] = e~ + ~ - -  
ay----~l �9 x I ox 1 

XI >/ O, YI  >/ O, 

YI-+  co: w0-+0;  Y I > 0 ,  XI -+  oo: w0-+ 0, 

Y I = O :  w o = 1 ,  ] o = _ _ _ y  + e  t ow a2/3+O(~) ,  
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X l  = I0 - -  00[8 -1/3, Y~ = (r* - -  l ) s - 1 / 3 ,  er=~ (le0rl-  l)e 2/~, (2 .8)  
Oo ---- arccos (--sgn e~ 

r 

Equation (2.8) is numerically integrated to determine the electrification current and 
the volumetric charge near the critical point. As an example Fig. 1 shows the lines of levels 
1-3, corresponding to values of q* = 0.1, 0.5, 0.9 when er ~ = -i, 8 0 = ~. 

On the basis of the calculations performed here and from (2.3) and (2.7) we have ob- 
tained the approximate analytical expressions for the particle charge current: 

( 2 . 9 )  I o : F J 3 P e  E -~ 5I ~ 

F= : 3Pe~(I 1 + ~12 d- e4/3Ia), 

0 2 i (i ~o2~1/~ 
1 & 7- -- rJ , 

/ = 0, e! < o: i = 
r 

The remaining term 5I ~ has the order O(e 3) when ler ~ _> 1 + 0(s2~3), O(s 3/2) for the case 
in which ler~ <- 1 - O(e 2/3) and O(e s/3) when l[erll - 11 <_ O(e 2 3). The expression for 
13 represents an approximation of the function found as a result of the numerical solution 
of ( 2 . 8 ) .  

3. Le t  us l i m i t  o u r s e l v e s  t o  t h e  f u r t h e r  c a s e  o f  K* = co ( t h e  a b s o l u t e  a b s o r b i n g  s u r f a c e  
o f  t h e  p a r t i c l e ) .  Using t h e  method o f  j o i n i n g  t h e  a s y m p t o t i c  e x p a n s i o n s  [ 5 ] ,  K l e t t  [4] found  
a s o l u t i o n  f o r  p rob lem ( 1 . 1 )  f o r  t h e  c a s e  in  which  Pe E was s m a l l  and he d e r i v e d  t h e  f o l l o w i n g  
e x p r e s s i o n  f o r  t h e  g l o b a l  e l e c t r i f i c a t i o n  c u r r e n t :  

I< 

-J 0 . e ~ 
r 

Fig. 2 

7 

o 2 x~ 

Fig. 1 

0,2 

8* 
r 

Fig. 3 
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I *  = Fo (Pes ,  er) + O(PeE), ( 3 .  l )  

* / A ( < )  : < / ( e x p  e r -- F o : A ( l  + A exp erPeE~2 , * I ) ,  

e r = 3 P e ~ e  ~ I *  : : 3 P e  z I  ~ 
r '  

Using the limit relationship (2.9) and (3.1), we can construct the approximate inter- 
polation formula for the calculation of the charge current I* = la*(PeE, er*) for the case 
in which Pe E - i: 

Pe~ <~ 2: I a = Fo(PeE•  er) ' 

Pe E > 2: I a = Fo: (Pes •  2, e?), 
r 

x 1 t + 0 , 1 5 7 ~  o 745 ---- r e ?  , •  1'4a 

(3.2) 

The structure of expression (3.2) ensures satisfaction of the asymptotes of (2.9) and 
(3.1) in the limit cases Pe E + ~ and Pe E + 0. The functions ~1,2(Pe E) have been selected 
so as to approximate the function Ia(Pe E, er*) to the function I*(PeE, er*), derived from 
the numerical solution of boundary-value problem (i.i) [8]. Good approximation is achieved 
here. The relative error ~r(PeE, er*) = II* - Ia*I/I* for negative and moderately positive 
values of er* does not exceed 10%. With an increase in er*, ~r(PeE, e~*) 6 increases because 
of the rapid diminution of I*; however, the absolute error II* - Ia* I diminishes. As 
an example, Fig. 2 shows graphs of the relationship between the dimensionless electrification 
current and the particle charge, constructed for the case in which Pe E = 1 on the basis of 
formula (3.2) and from the results of the numerical calculation (curves 1 and 2). 

Because of an absence of reliable interpolation formulas to calculate the electrifica- 
tion current in the case of a combined particle charge, until very recently we have used 
the simple relationship Is*(PeE, er*) = 3 Pe EIx(PeE, er*) +A(er*) (line 3 in Fig. 2), found 
through the simple addition of the principal terms of asymptotic expansions (2.9) and (3.1) 
in the limit cases Pe E § ~ and Pe E + 0. However, as is easily seen, the principal terms 
of the expansions of the functions Is* and I* (2.9) when er* < 0, Pe E + ~ do not coincide. 
However, with moderate Pe E values the charge current calculated in this fashion may differ 
by a factor of 2 or more from its true value. Moreover, analysis of Eqs. (I.i) and the function 
Is*(PeE, er*) shows that for any values of Pe E the relationship er* § I* = -er* + o(i), 
Is* = -2er* + o(i) is satisfied. In this connection, the greatest errors in the calculation 
of the particle electrification are to be expected in the case of bipolar charging of the 
dispersion phase, when the charge of each kind of ion is described by means of the function 
Is*(PeE, er*) [9]. Formula (3.2) shows none of these shortcomings. 

Figure 3 shows the absolute error arising through the utilization of formula (3.2), 
as well as the asymptotic expressions (3.1) and (2.9) (lines 1-3) as functions of the particle 
charge when er* > 0 and Pe E = i. Comparison shows that (2.9) and (3.1) for the approximate 
calculation can be used even with moderate Peclet numbers such as, for example, when PeE > 
2 and Pe E ~ 2, respectively. The magnitude of the error in the calculation of the electrifi- 
cation current in this case is somewhat greater than with utilization of (3.2), but is never- 
theless substantially smaller than when we determine the current from the relationship 
Is*(PeE, er*) (line 4 in Fig. 3). 
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ACOUSTIC CERENKOV RADIATION AND ITS UTILIZATION 

IN HOLOGRAPHY METHODS TO STUDY MOVING MEDIA 

N. N. Antonov, I. A. Kolmakov, V. V. Samartsev, 
and V. A. Shkalikov 

UDC 534.222:532.574 

An interference interpretation is presented for acoustic Cerenkov radiation and we con- 
sider the possibility of its utilization as a basis of holography methods to study moving 
media. 

In [i, 2] we find an examination of the possibility of using the sound scattering effect 
to find the average velocity and distribution of velocities for combustion products on the 
basis of the cross-sectional area of a combustion chamber. A new phenomenon has been stu- 
died rather recently, and namely, the acoustic Cerenkov radiation [3, 4] and some of its 
aspects of application, in particular, the utilization of this effect in solving problems 
analogous to those presented in [2]. 

In the present paper we put forward an "interference" interpretation of acoustic Ceren- 
kov radiation and we examine a new approach to the solution of problems (analogous to those 
mentioned above), based on the utilization of the Cerenkov radiation and the methods of dyna- 
mic holography [5-9]. These questions are fundamental, both from the standpoint of valida- 
ting the possibilities of using this new approach to the solution of numerous applied prob- 
lems, as well as in connection with the fact that the solution that we will present later 
on is subsequently necessary for a more detailed and penetrating investigation into the pro- 
cess of holography, in the processing and deciphering of the results, etc. 

The methods and means presently at hand to determine the parameters of moving media 
(in particular, products of combustion) frequently are of inadequate accuracy, and the re- 
sulting information, as a rule, is both insufficient and fails to provide a complete picture 
of the phenomena being studied. The latter, in turn, is one of the reasons why the deter- 
mination of the values for the parameters of the medium are determined with unsatisfactory 
accuracy. 

In our opinion, an extremely promising approach, in terms of the completeness of in- 
formation and its accuracy, involves the methods of dynamic holography in combination with 
acoustic Cerenkov radiation. In particular, this approach may prove to be useful in study- 
ing nonsteady and fast-moving processes, since the information about the medium may be de- 
veloped virtually instantaneously and it will exhibit four-dimensional characteristics (the 
three coordinates and time). Moreover, we have the possibility of contact-free (i.e., per- 
formed on the outside surface of the wall, or of the combustion chamber) probing in which 
the probe region is situated at a considerable distance from the point of "egress" for the 
combustion products from the combustion chamber, with the information being transmitted to 
the outside at a controlled Cerenkov angle. 

The use of acoustic Cerenkov radiation expands the possibilities of dynamic holography, 
i.e., new channels for the transmission of information are created (with the Cerenkov angle), 
and the hologram itself will differ from the familiar features encountered in the supersonic 
(or in faster-than-light with electromagnetic radiation) motion of an interference grid. 
Moreover, the information on the medium (the object) is obtained virtually instantaneously, 
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